Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 102(45): e34686, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37960769

RESUMO

To explore the mechanism of Tripterygium wilfordii polyglycoside (TWP) in the treatment of membranous nephropathy (MN) by network pharmacology. TCMSP and DrugBank databases were used to screen the main targets of the main active components of Tripterygium glycosides, and OMIM and Gene Cards databases were used to search the gene targets of MN. UniProt database was used to normalize all the targets to get the intersection targets of TGs and MNs. Synergistic genes were uploaded to the STRING platform to construct a protein-protein interaction network and screen related core targets. Gene Ontology and Kyoto Genome Encyclopedia analyses of core targets were performed using the DAVID database. AutoDockTools software was used to verify the molecular docking between the active components of TGs and the synergistic genes. We identified 126 potential targets for the active component of Tripterygium glycosides, 584 MN-associated disease targets, and 28 co-acting genes. It mainly involves AGE-RAGE signaling pathway, lipid and atherosclerosis, IL-17 signaling pathway, fluid shear stress and atherosclerosis, NF-kappa B signaling pathway and other pathways and biological pathways in diabetic complications. The active component of that Tripterygium glycosides and the active site of the synergistic core target can the bond energy is less than -5kJ/mol. Tripterygium glycosides can regulate the release of inflammatory factors to treat MN through multiple active components, multiple disease targets, multiple biological pathways and multiple pathways, which provides a basis for broadening the clinical use of traditional Chinese medicine in the treatment of MN.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/genética , Simulação de Acoplamento Molecular , Tripterygium , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Chem Commun (Camb) ; 59(85): 12703-12706, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819218

RESUMO

The infectious disease coronavirus 2019 (SARS-CoV-2) is caused by a virus that has RNA as its genetic material. To understand the detailed structural features of SARS-COV-2 RNA, we probed the RNA structure by NMR. Two RNA sequences form a duplex and self-associate to form a dimeric G-quadruplex. The FrG nucleoside was employed as a 19F sensor to confirm the RNA structure in cells by 19F NMR. A FRET assay further demonstrated that the dimeric G-quadruplex resulted in RNA dimerization in cells. These results provide the basis for the elucidation of SARS-COV-2 RNA function, which provides new insights into developing novel antiviral drugs against SARS-COV-2.


Assuntos
COVID-19 , Quadruplex G , Humanos , SARS-CoV-2 , RNA Viral/genética , Dimerização
3.
Inorg Chem ; 62(1): 433-441, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36574613

RESUMO

An in-depth insight into the effect of nitrogen substitution on structural stabilization is important for the design of new spinel-type oxynitride materials with tailored properties. In this work, the crystal structures of ordered and disordered LiAl5O8 obtained by slow cooling and rapid quenching, respectively, were analyzed by a X-ray diffraction (XRD) Rietveld refinement and OccQP program. The variation in the bonding state of atoms in the two compounds was explored by the bond valence model, which revealed that the instability of spinel-type LiAl5O8 crystal structure at room temperature is mainly due to the severe under-bonding of the tetrahedrally coordinated Al cations. With the partial substitution of oxygen with nitrogen in LiAl5O8, a series of the nitrogen-stabilized spinel LiyAl(16+x-y)/3O8-xNx (0 < x < 0.5, 0 < y < 1) was successfully prepared. The crystal structures were systematically investigated by the powder XRD structural refinement combined with 7Li and 27Al magic-angle spinning nuclear magnetic resonance. All the Li+ ions entered the octahedra, while the Al resonances may be composed of multiple non-equivalent Al sites. The structural stability of spinel LiyAl(16+x-y)/3O8-xNx at ambient temperature was attributed to the cationic vacancies and high valence generated by the N ions, which alleviated the under-bonding state of the tetrahedral Al-O bond. This work provides a new perspective for understanding the composition-structure relationship in spinel compounds with multiple disorders.

4.
Dalton Trans ; 50(42): 15210-15223, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34622889

RESUMO

A series of Fe(III) complexes [Fe(5-F-sal-N-1,4,7,10)]Y (Y = PF6- for 1, Y = ClO4- for 2, Y = I- for 3 and Y = NO3- for 4) have been prepared. Single-crystal X-ray crystallographic studies show that complex 1 crystallizes in the orthorhombic Pna21 space group and complexes 2-4 have an isomorphous structure and crystallize in the same monoclinic space group, P21/n. Complexes 2-4 have two independent molecules (Fe1 and Fe2) in the unit cell. Magnetic susceptibility measurements demonstrated that complexes 1 and 3 showed a gradual one-step SCO behavior (T1/2 for 1 = 177 K and for 3 = 227 K) without thermal hysteresis. The magnetic behavior of 2 shows an incomplete two-step SCO process at T1/2 = 114 K and 170 K, respectively, while 4 is in a high-spin state at all measured temperatures. A careful evaluation of the supramolecular structures of these complexes revealed correlation between the supramolecular packing forces and their SCO behavior. The crystal structure of 1 consists of a three-dimensional (3D) extended network constructed from N-H⋯F and C-H⋯F hydrogen bonds, and C-H⋯π and C⋯C short contacts. In compounds 2-4, the crystal packing is governed by C⋯C, C-H⋯π and p-π interactions for the Fe1 centers and by C-H⋯π/O interactions for the Fe2 centers, which form 1D chains. Additional interactions (C-H⋯F and N-H⋯O/I) connect the neighboring chains and planes to form a complex supramolecular network. The anion⋯π interactions in 4 provide a means for preventing SCO occurring at low temperatures. This suggests that the supramolecular connectivity of the anions influences the magnetic properties.

5.
ACS Appl Mater Interfaces ; 13(30): 35961-35971, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34313121

RESUMO

A fully roll-to-roll manufactured electrochemical sensor with high sensing and manufacturing reproducibility has been developed for the detection of nitroaromatic organophosphorus pesticides (NOPPs). This sensor is based on a flexible, screen-printed silver electrode modified with a graphene nanoplatelet (GNP) coating and a zirconia (ZrO2) coating. The combination of the metal oxide and the 2-D material provided advantageous electrocatalytic activity toward NOPPs. Manufacturing, scanning electron microscopy-scanning transmission electron microscopy image analysis, electrochemical surface characterization, and detection studies illustrated high sensitivity, selectivity, and stability (∼89% current signal retention after 30 days) of the platform. The enzymeless sensor enabled rapid response time (10 min) and noncomplex detection of NOPPs through voltammetry methods. Furthermore, the proposed platform was highly group-sensitive toward NOPPs (e.g., methyl parathion (MP) and fenitrothion) with a detection limit as low as 1 µM (0.2 ppm). The sensor exhibited a linear correlation between MP concentration and current response in a range from 1 µM (0.2 ppm) to 20 µM (4.2 ppm) and from 20 to 50 µM with an R2 of 0.992 and 0.991, respectively. Broadly, this work showcases the first application of GNPs/ZrO2 complex on flexible silver screen-printed electrodes fabricated by entirely roll-to-roll manufacturing for the detection of NOPPs.

6.
ACS Appl Mater Interfaces ; 13(9): 11369-11384, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625223

RESUMO

The inkjet printing of metal electrodes on polymer films is a desirable manufacturing process due to its simplicity but is limited by the lack of thermal stability and serious delaminating flaws in various aqueous and organic solutions. Kapton, adopted worldwide due to its superior thermal durability, allows the high-temperature sintering of nanoparticle-based metal inks. By carefully selecting inks (Ag and Au) and Kapton substrates (Kapton HN films with a thickness of 135 µm and a thermal resistance of up to 400 °C) with optimal printing parameters and simplified post-treatments (sintering), outstanding film integrity, thermal stability, and antidelaminating features were obtained in both aqueous and organic solutions without any pretreatment strategy (surface modification). These films were applied in four novel devices: a solid-state ion-selective (IS) nitrate (NO3-) sensor, a single-stranded DNA (ssDNA)-based mercury (Hg2+) aptasensor, a low-cost protein printed circuit board (PCB) sensor, and a long-lasting organic thin-film transistor (OTFT). The IS NO3- sensor displayed a linear sensitivity range between 10-4.5 and 10-1 M (r2 = 0.9912), with a limit of detection of 2 ppm for NO3-. The Hg2+ sensor exhibited a linear correlation (r2 = 0.8806) between the change in the transfer resistance (RCT) and the increasing concentration of Hg2+. The protein PCB sensor provided a label-free method for protein detection. Finally, the OTFT demonstrated stable performance, with mobility values in the linear (µlin) and saturation (µsat) regimes of 0.0083 ± 0.0026 and 0.0237 ± 0.0079 cm2 V-1 S-1, respectively, and a threshold voltage (Vth) of -6.75 ± 3.89 V.


Assuntos
Imidas/química , Mercúrio/análise , Nitratos/análise , Polímeros/química , Proteínas/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Periféricos de Computador , DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Tinta , Limite de Detecção , Prata/química , Transistores Eletrônicos
7.
Ultrason Sonochem ; 70: 105324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32947211

RESUMO

Advanced oxidation processes can potentially eliminate organic contaminants from industrial waste streams as well as persistent pharmaceutical components in drinking water. We explore for the first time the utilization of Cavitation Intensifying Bags (CIB) in combination with Pd/Al2O3 catalyst as possible advanced oxidation technology for wastewater streams, oxidizing terephthalic acid (TA) to 2-hydroxyterephthalic acid (HTA). The detailed characterization of this novel reaction system reveals that, during sonication, the presence of surface pits of the CIB improves the reproducibility and thus the control of the sonication process, when compared to oxidation in non-pitted bags. Detailed reaction kinetics shows that in the CIB reactor the reaction order to TA is zero, which is attributed to the large excess of TA in the system. The rate of HTA formation increased ten-fold from ~0.01 µM*min-1 during sonication in the CIB, to ~0.10 µM*min-1 for CIB in the presence of the Pd/Al2O3 catalyst. This enhancement was ascribed to a combination of improved mass transport, the creation of thermal gradients, and Pd/Al2O3 catalyst near the cavitating bubbles. Further analysis of the kinetics of HTA formation on Pd/Al2O3 indicated that initially the reaction underwent through an induction period of 20 min, where the HTA concentration was ~0.3 µM. After this, the reaction rate increased reaching HTA concentrations ~6 µM after 40 min. This behavior resembled that observed during oxidation of hydrocarbons on metal catalysts, where the slow rate formation of hydroperoxides on the metal surface is followed by rapid product formation upon reaching a critical concentration. Finally, a global analysis using the Intensification Factor (IF) reveals that CIB in combination with the Pd/Al2O3 catalyst is a desirable option for the oxidation of TA when considering increased oxidation rates and costs.

8.
Nanoscale ; 12(13): 7301-7308, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32202290

RESUMO

Reversible redox reaction-based thermochromism using plasmonic nanocrystals is challenging due to the requirements set based on the complexity of the reaction system where the oxidizing and reducing agents must not interfere with each other, and both should possess temperature sensitivity. Herein, we demonstrate plasmonic thermochromism based on a reversible redox reaction of Ag+/Ag on Au nanorods (AuNRs) by incorporating temperature-sensitive reducing and oxidizing agents into the same system. The competition between reduction and oxidation is solely dependent on temperature. When the temperature is above (below) the transition temperature, the reduction of Ag+ (oxidation of Ag) dominates on the surface of AuNRs, and the thermochromic nanostructure solution appears green (red). An experimental study on the mechanism reveals that HOCl produced at low concentrations by H2O2 is the source of the observed temperature dependence of the Ag oxidation. Rationally tuning the transition temperature in a range from 27 to 40 °C can be realized by changing the concentration of some key chemical compounds in the solution. The thermochromic solution can be standalone-functional within multiple cycles of heating and cooling and long-term storage without any additional reagents. Our study provides new insight into plasmonic thermochromism and may pave the way for fabricating smart thermochromic materials.

9.
Science ; 362(6412): 311-315, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30337405

RESUMO

The development of highly reactive and stereoselective catalytic systems is required not only to improve existing synthetic methods but also to invent distinct chemical reactions. Herein, a homogenized combination of nickel-based Lewis acid-surfactant-combined catalysts and single-walled carbon nanotubes is shown to exhibit substantial activity in water. In addition to the enhanced reactivity, stereoselective performance and long-term stability were demonstrated in asymmetric conjugate addition reactions of aldoximes to furnish chiral nitrones in high yields with excellent selectivities. The practical and straightforward application of the designed catalysts in water provides an expedient, environmentally benign, and highly efficient pathway to access optically active compounds.

10.
Onco Targets Ther ; 11: 5723-5731, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254465

RESUMO

PURPOSE: Cancer stem cells (CSCs) are a small population of cancer cells located within a tumor that are highly tumorigenic, capable of tumor initiation, and resistant to cancer therapies. We identified the potential genes involved in regulating stemness properties and investigated the mechanisms in small-cell lung cancer (SCLC). MATERIALS AND METHODS: Whole transcriptome sequencing technology was used to screen the potential genes involved in regulating stemness properties from SCLC-SCs (uPAR+) and differentiated cells (uPAR-) in the H446 cell line. The selected genes were validated by quantitative reverse transcription PCR and ELISAs. The effect of IL-8 on stemness of sphere-forming cells was determined through tumor sphere formation, wound healing migration, and in vivo tumorigenesis assays. RESULTS: In our study, uPAR+ and uPAR- cells showed different gene expression profiles. IL-8 was upregulated in SCLC sphere-forming cells. Blocking IL-8 expression with siRNA led to loss of stemness, including the self-renewal capability, migration, expression of stemness-related genes, and in vivo tumorigenicity, in sphere-forming cells. Consistently, exogenously added IL-8 enhanced stemness properties in parental cells. CONCLUSION: IL-8 was upregulated in SCLC sphere-forming cells, and critical for the acquisition and/or maintenance of the stemness features in the SCLC cell line H446. Our results suggest that blocking IL-8 signaling may provide a novel therapeutic approach for targeting SCLC-SCs and improve treatment and outcomes in SCLC.

11.
Chem Rev ; 118(2): 679-746, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29218984

RESUMO

Traditional organic synthesis relies heavily on organic solvents for a multitude of tasks, including dissolving the components and facilitating chemical reactions, because many reagents and reactive species are incompatible or immiscible with water. Given that they are used in vast quantities as compared to reactants, solvents have been the focus of environmental concerns. Along with reducing the environmental impact of organic synthesis, the use of water as a reaction medium also benefits chemical processes by simplifying operations, allowing mild reaction conditions, and sometimes delivering unforeseen reactivities and selectivities. After the "watershed" in organic synthesis revealed the importance of water, the development of water-compatible catalysts has flourished, triggering a quantum leap in water-centered organic synthesis. Given that organic compounds are typically practically insoluble in water, simple extractive workup can readily separate a water-soluble homogeneous catalyst as an aqueous solution from a product that is soluble in organic solvents. In contrast, the use of heterogeneous catalysts facilitates catalyst recycling by allowing simple centrifugation and filtration methods to be used. This Review addresses advances over the past decade in catalytic reactions using water as a reaction medium.

12.
Nano Lett ; 17(5): 3182-3187, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28409638

RESUMO

Replacing flammable organic liquid electrolytes with solid Li-ion conductors is a promising approach to realize safe rechargeable batteries with high energy density. Composite solid electrolytes, which are comprised of a polymer matrix with ceramic Li-ion conductors dispersed inside, are attractive, since they combine the flexibility of polymer electrolytes and high ionic conductivities of ceramic electrolytes. However, the high conductivity of ceramic fillers is largely compromised by the low conductivity of the matrix, especially when nanoparticles (NPs) are used. Therefore, optimizations of the geometry of ceramic fillers are critical to further enhance the conductivity of composite electrolytes. Here we report the vertically aligned and connected Li1+xAlxTi2-x(PO4)3 (LATP) NPs in the poly(ethylene oxide) (PEO) matrix to maximize the ionic conduction, while maintaining the flexibility of the composite. This vertically aligned structure can be fabricated by an ice-templating-based method, and its conductivity reaches 0.52 × 10-4 S/cm, which is 3.6 times that of the composite electrolyte with randomly dispersed LATP NPs. The composite electrolyte also shows enhanced thermal and electrochemical stability compared to the pure PEO electrolyte. This method opens a new approach to optimize ion conduction in composite solid electrolytes for next-generation rechargeable batteries.

13.
Nano Lett ; 16(11): 7235-7240, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27696883

RESUMO

An important requirement of battery anodes is the processing step involving the formation of the solid electrolyte interphase (SEI) in the initial cycle, which consumes a significant portion of active lithium ions. This step is more critical in nanostructured anodes with high specific capacity, such as Si and Sn, due to their high surface area and large volume change. Prelithiation presents a viable approach to address such loss. However, the stability of prelithiation reagents is a big issue due to their low potential and high chemical reactivity toward O2 and moisture. Very limited amount of prelithiation agents survive in ambient air. In this research, we describe the development of a trilayer structure of active material/polymer/lithium anode, which is stable in ambient air (10-30% relative humidity) for a period that is sufficient to manufacture anode materials. The polymer layer protects lithium against O2 and moisture, and it is stable in coating active materials. The polymer layer is gradually dissolved in the battery electrolyte, and active materials contact with lithium to form lithiated anode. This trilayer-structure not only renders electrodes stable in ambient air but also leads to uniform lithiation. Moreover, the degree of prelithiation could vary from compensating SEI to fully lithiated anode. With this strategy, we have achieved high initial Coulombic efficiency of 99.7% in graphite anodes, and over 100% in silicon nanoparticles anodes. The cycling performance of lithiated anodes is comparable or better than those not lithiated. We also demonstrate a Li4Ti5O12/lithiated graphite cell with stable cycling performance. The trilayer structure represents a new prelithiation method to enhance performance of Li-ion batteries.

14.
Small ; 12(36): 5049-5057, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27362953

RESUMO

Nanosynthesis is the basis of nanotechnology and its applications. It is necessary to understand the growth mechanism of nanoparticles and the functions of growth factors. An effective way to study the synthesis is at the single nanoparticle level. This study reports a single nanoparticle spectrometer, which is based on a commercial dark-field microscopy and a group of narrowband filters. This spectrometer has many advantages, such as high light transparency (35%-75%), low cost (<$1500), massive screening (≈200 nanoplates at a time), and a high time resolution (<5 s). By using this spectrometer, the galvanic replacement reaction (GRR) is studied on single Ag nanoplates in situ and in real time. The research reveals that GRR on single Ag nanoplates has three different types according to the change of peak wavelength during reaction. Such diverse reaction types can be attributed to the different relative reaction rates of GRR on the faces and edges of Ag nanoplate with different facets. Further research shows that the relative reaction rates of different facets vary a lot under different concentrations of tri-sodium citrate. This research successfully demonstrates that the new single nanoparticle spectrometer can study the growth of single nanoparticles and the effect of growth factors.

15.
Small ; 12(36): 5081-5089, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27159087

RESUMO

Surface modifications of plasmonic nanoparticles with metal adsorbates are essential in applications such as plasmonic sensing, plasmon-enhanced photocatalysis, etc., where spectral broadening is usually observed. A single particle study is presented on plasmon damping by adsorption of platinum (Pt) clusters. Single particle dark-field spectroscopy is employed to measure exactly the same gold nanorod before and after the Pt adsorption. The Pt-induced plasmon damping in terms of linewidth increase is found dependent on the resonance wavelength of the measured nanorod, which is dispersive in nature. The measured dispersion generally matches the theoretical prediction, and it basically exhibits a gradual increase with decreasing resonance energy. This increase can be attributed to the fact that the nanorod as a better resonator is more susceptible to the Pt adsorption than the spherical particles. Moreover, simulated results based on discrete dipole approximation method further indicate that the damping is mainly contributed from the adsorbates on the ends of the nanorod and independent on the type of the metal adsorbed. Knowledge and insights gained in this study can be very important for the design and fabrication of plasmonic heterostructures as functional nanomaterials.

16.
Nanomicro Lett ; 8(4): 328-335, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30460291

RESUMO

We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns. The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide (CTAB). Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield, which are, respectively, optimized to be 85 °C and 6. The highest yield that can be achieved is 60 % at the optimized condition. The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions. Therefore, the reported synthesis approach is a time- and cost-effective one. The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually. Interestingly, only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules, where a maximum enhancement factor of 1.7 × 107 was obtained. The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.

17.
Nanoscale ; 8(10): 5417-21, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26585611

RESUMO

We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles.

18.
J Am Chem Soc ; 137(49): 15422-5, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26646601

RESUMO

Acicular purplish crystals were obtained from Cu(acac)2 and a chiral bipyridine ligand. Although the crystals were not soluble, they nevertheless catalyzed asymmetric silyl conjugate addition of lipophilic substrates in water. Indeed, the reactions proceeded efficiently only in water; they did not proceed well either in organic solvents or in mixed water/organic solvents in which the catalyst/substrates were soluble. This is in pronounced contrast to conventional organic reactions wherein the catalyst/substrates tend to be in solution. Several advantages of the chiral Cu(II) catalysis in water over previously reported catalyst systems have been demonstrated. Water is expected to play a prominent role in constructing and stabilizing sterically confined transition states and accelerating subsequent protonation to achieve high yields and enantioselectivities.

19.
Beilstein J Org Chem ; 11: 2007-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664621

RESUMO

The promising performance of copper(II) complexes was demonstrated for asymmetric boron conjugate addition to α,ß-unsaturated nitriles in water. The catalyst system, which consisted of Cu(OAc)2 and a chiral 2,2'-bipyridine ligand, enabled ß-borylation and chiral induction in water. Subsequent protonation, which was accelerated in aqueous medium, led to high activity of this asymmetric catalysis. Both solid and liquid substrates were suitable despite being insoluble in water.

20.
Nanoscale ; 7(41): 17529-37, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26444556

RESUMO

We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a "hot surface" for enhancing the Raman response of two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...